10 research outputs found

    Mitigation of Through-Wall Distortions of Frontal Radar Images using Denoising Autoencoders

    Full text link
    Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction and multipath clutter in indoor through-wall environments. While several methods have been proposed for removing target independent static and dynamic clutter, there still remain considerable challenges in mitigating target dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this work we focus on mitigating wall effects using a machine learning based solution -- denoising autoencoders -- that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with two-dimensional array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with two-dimensional array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images

    Representation of Radar Micro-Dopplers Using Customized Dictionaries

    Get PDF
    Human motions give rise to frequency modulations, known as micro-Dopplers, to continuous wave radar signals. Micro-Doppler signals have been extensively researched for the classification of different types of human motions as well as to distinguish humans from other moving targets. However, there are two main scenarios where the performance of existing algorithms deteriorates significantly—one, when the channel consists of multiple moving targets resulting in distorted signatures, and two, when the systems conditions during the training stage deviate significantly from the conditions during the test stage. In this chapter, it is demonstrated that both of these limitations can be overcome by representing the radar data through customized dictionaries, fine-tuned to provide sparser representations of the data, than traditional data-independent dictionaries such as Fourier or wavelets. The performances of the algorithms are evaluated with both simulated and measured radar data gathered from moving humans in indoor line-of-sight conditions

    Radar Enhanced Multi-Armed Bandit for Rapid Beam Selection in Millimeter Wave Communications

    Full text link
    Multi-arm bandit (MAB) algorithms have been used to learn optimal beams for millimeter wave communication systems. Here, the complexity of learning the optimal beam linearly scales with the number of beams, leading to high latency when there are a large number of beams. In this work, we propose to integrate radar with communication to enhance the MAB learning performance by searching only those beams where the radar detects a scatterer. Further, we use radar to distinguish the beams that show mobile targets from those which indicate the presence of static clutter, thereby reducing the number of beams to scan. Simulations show that our proposed radar-enhanced MAB reduces the exploration time by searching only the beams with distinct radar mobile targets resulting in improved throughput.Comment: 5 pages, 6 figure

    Estimation of Electrical Characteristics of Inhomogeneous Walls Using Generative Adversarial Networks

    No full text
    Through-wall radars are researched and developed for the detection, localization, and tracking of human activities in indoor environments. Electromagnetic wave propagation through walls introduces refraction, attenuation, multipath, and ghost targets in the radar signatures. The estimation of wall characteristics (dielectric profile and thickness) can enable wall effects to be deconvolved from through-wall radar signatures. We use generative adversarial networks (GANs) to estimate wall characteristics from narrowband scattered electric fields on the same side of the wall as the transmitter. We demonstrate that the GANs, consisting of two neural networks configured in an adversarial manner, are capable of solving the highly nonlinear regression problem with limited training data to estimate the dielectric profile and thickness of actual walls up to 95% accuracy based on training with simulated data generated from full-wave solvers

    High-resolution radar imaging of moving humans using doppler processing and compressed sensing

    No full text

    Mitigation of Through-Wall Distortions of Frontal Radar Images Using Denoising Autoencoders

    No full text

    Synthesis of Micro-Doppler Signatures of Human Activities From Different Aspect Angles Using Generative Adversarial Networks

    No full text
    In this paper, we propose to produce synthesized micro-Doppler signatures from different aspect angles through conditional generative adversarial networks (cGANs). Micro-Doppler signatures of non-rigid human body motions vary considerably as a function of the radar's aspect angle. Because the direction of the human motion can be arbitrary, a large volume of training data across diverse aspects is needed for practical target activity classification through machine learning. As measurements can require significant monetary and labor costs, the synthesis of micro-Doppler signatures can be an alternate solution. Therefore, we investigate the feasibility of data augmentation through synthesizing micro-Doppler signatures of human activities from diverse radar aspect angles with input data from a single aspect angle. For the training data, the micro-Doppler radar signatures of 12 human activities are generated from different angles ranging from 0 to 315 degrees, at 45-degree increments, through simulations. For each angle, cGANs are trained to synthesize the micro-Doppler signatures for that specific angle given micro-Doppler signatures from another angle. The output of each model is evaluated by calculating mean-square errors and structural similarity indexes between the synthesized micro-Doppler signatures and the ground-truth ones obtained from simulations. We test three different scenarios, and report the respective results. © 2013 IEEE.1
    corecore